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Nonlinear dynamics of the elliptic instability
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In this paper, we analyse by numerical simulations the nonlinear dynamics of the
elliptic instability in the configurations of a single strained vortex and a system
of two counter-rotating vortices. We show that although a weakly nonlinear regime
associated with a limit cycle is possible, the nonlinear evolution far from the instability
threshold is, in general, much more catastrophic for the vortex. In both configurations,
we put forward some evidence of a universal nonlinear transition involving shear layer
formation and vortex loop ejection, leading to a strong alteration and attenuation of
the vortex, and a rapid growth of the vortex core size.

1. Introduction
Vortices are ubiquitous in fluid flows and are observed at all scales, from the

smallest scales of turbulence to the largest astrophysical scales. Although they are
robust structures, they exhibit rich dynamical behaviours which are not all well
understood. The two-dimensional dynamics of vortices have been largely studied,
and numerous intrinsic instabilities of two-dimensional vortices such as the shear
instability or the centrifugal instability had been described several decades ago (see
e.g. Drazin & Reid 1981). Later, it was discovered that a three-dimensional instability
could be due to the interaction of vortices with each other (Moore & Saffman 1975).
It was found that this (elliptic) instability was actually due to the strain field induced
by the other vortices (see Kerswell 2002 for a review). It is now believed that this
instability could affect the dynamics of the trailing vortex pair generated by aircraft
(Laporte & Corjon 2000). For this configuration, the characteristics of the instability
in the linear regime obtained in the numerical simulations by Laporte & Leweke
(2002) and in low-Reynolds-number experiments by Leweke & Williamson (1998)
have been found to be in good agreement with the theory of Le Dizès & Laporte
(2002).

Weakly nonlinear theories exist for a single vortex in a strain field (Sipp 2000)
and for the rotating flow in a cylinder (Waleffe 1989; Eloy, Le Gal & Le Dizès
2003; Racz & Scott 2008). In an inviscid framework, these theories predict that the
nonlinearity should detune the phase of the instability mode and make its amplitude
go back to zero. In a cylinder, viscosity changes this picture as the fixed point, limit
cycle, chaos or unbounded growth have been shown to become possible dynamical
behaviours (Racz & Scott 2008). Kerswell (1999) and Mason & Kerswell (1999) have
also demonstrated that when a fixed point state exists, it is very sensitive to secondary
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instabilities. For a vortex in a strain field or for vortex pairs, no such predictions are
available.

Motivated by aeronautical applications, numerical simulations of the dynamics of
co-rotating or counter-rotating vortex pairs have been performed by several groups
(Laporte & Corjon 2000; Marshall, Brancher & Giovannini 2001; Bristol et al.
2004). Complicated nonlinear behaviours, involving vortex loops ejections and partial
reconnections, have been observed leading to a more or less rapid destruction of the
vortices depending on the configurations. However, no clear picture of the nonlinear
evolution of the elliptic instability has been put forward. In this paper, our goal is
to fill the gap between these fully nonlinear simulations and the weakly nonlinear
theory. By considering simple configurations, our objective is to identify some generic
or universal features associated with the nonlinear evolution of the elliptic instability.

2. Framework
In this paper, we consider Lamb–Oseen vortices (i.e. vortices in an open domain)
defined by their vorticity field written in cylindrical coordinates as

ω = Γ/(πa2) exp(−r2/a2),

where Γ and a are the circulation and the radius of the vortex, respectively. This
vorticity profile is a self-similar solution of the Navier–Stokes equations, provided that
the radius a evolves in a fluid of kinematic viscosity ν according to a(t) =

√
a2

0 + 4νt .
Throughout the paper, time scales are normalized by the vortex initial turnover time
2πa2

0/Γ , and kz denotes an axial wavenumber.
Two situations are studied: (i) a single vortex in an imposed external strain field

and (ii) two parallel counter-rotating vortices straining each other. Our objectives
are to understand the nonlinear regime of the elliptic instability in the first idealized
configuration for which linear and weakly nonlinear theories have been developed
and then to extend the results to a vortex configuration directly useful for practical
applications. For both cases, the nonlinear development of the instability is simulated
with the three-dimensional pseudo-spectral Cartesian code which has already been
used and tested by Roy et al. (2008). This code uses the three-dimensional fast Fourier
transform of the FFTW library (Frigo & Johnson 2005), and aliasing is avoided by
using the standard 2/3 rule. The spatial resolution is typically 256 × 256 × 48 in
the (x, y, z) directions where 0z is the vortex axis, but some simulations have been
performed at 512 × 512 × 64.

The base flow of case (i) is computed using a two-dimensional Navier–Stokes
code in cylindrical geometry (finite difference scheme in radial direction and Fourier
decomposition in azimuthal direction). This code allows us to impose a fixed strain
field for large radial coordinates (fixed here at R = 15 a0). Starting from an initial
condition composed of the axisymmetric Lamb–Oseen vortex plus a uniform strain
field of strain rate ε, the flow is found to relax on a non-viscous time scale to the
quasi-steady strained vortex solution obtained by Jiménez, Moffatt & Vasco (1996).
The accuracy of this solution is then checked by comparing the numerical strain
rate at the vortex centre with the theoretical prediction (Jiménez et al. 1996; Eloy &
Le Dizès 1999). This two-dimensional solution evolves slightly owing to viscous
diffusion. This effect is known to influence the development of the elliptic instability
(Eloy & Le Dizès 1999). For case (i), we have chosen to freeze artificially the base
flow in order to identify more clearly the nonlinear effects on the instability and to
be able to compare our results with the weakly nonlinear theory. This choice is also
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Figure 1. Contour plot of the vorticity perturbation of the most unstable mode (kz =2.25).
(a) In the linear regime; (b) at t = 960 for ε =0.005, Re =6300; (c) at t = 200 for ε = 0.01,
Re = 10 000. Cases (b) and (c) correspond to the angle and the amplitude circled in figure 2.
Solid and dashed lines are positive and negative isovorticity contours, respectively. The two
circles indicate the maximum and minimum of each mode from which the angle φ is computed.

motivated by applications of the results to the larger Reynolds number flows for
which viscous diffusion is negligible. Nevertheless, this assumption will be relaxed
for the two counter-rotating vortices case. It will allow us to check that it does not
significantly influence the nonlinear dynamics of the instability.

3. Vortex in a strain field
For this case, two sets of parameters are considered: ε = 0.005, Re =Γ/ν = 6300

and ε = 0.01, Re = 10 000. The nonlinear development of the elliptic instability is
computed by simulating the Navier–Stokes equations for the perturbations u, using
the three-dimensional pseudo-spectral code. The size of the box along the vortex axis
is set to a single wavelength of the most unstable linear mode. Without nonlinear
terms, we let the flow perturbation corresponding to this mode emerge from white
noise until the growth rate converges. We then start the nonlinear simulation with a
perturbation scaled to a small amplitude such that the linear growth of the instability
is always observed before nonlinear effects become significant.

3.1. Weakly nonlinear regime

For ε =0.005, the onset of the elliptic instability is at Re = 5416. The first computation
at Re =6300 is performed close to the stability threshold in order to look at a weakly
nonlinear regime. The dimensionless linear growth rate at this Reynolds number is
σ = 1.9 × 10−3. The evolution of the shape of the most unstable mode, kz = 2.25, is
displayed in figure 1(a,b). While the linear eigenmode is perfectly aligned with the
stretching axis (figure 1a), the nonlinear effects cause a slight rotation of the structure,
as predicted by the weakly nonlinear theory of Sipp (2000). The mode structure is
almost unmodified during this simulation. The dynamics of the angle φ as defined in
figure 1(b) can be analysed as the amplitude of the mode increases and are plotted
in figure 2. We observe a limit cycle with a small frequency approximately equal
to 8.6 × 10−3. This behaviour was predicted by Racz & Scott (2008) for the weakly
nonlinear evolution of a similar instability in a cylinder, but it has been observed for
the first time in the case of the elliptic instability of a strained vortex. Note that in
the inviscid framework, no limit cycle is expected in the weakly nonlinear regime:
the angle should rotate towards the direction of the compression of the strain field
and the amplitude should return to zero (Sipp 2000). The time evolution of the mean
axial vorticity profile (z- and θ-averaged) is shown in figure 3. The slow periodic
oscillation associated with the limit cycle can be seen on this plot. Note also that the



474 N. Schaeffer and S. Le Dizès

0 0.1 0.2 0.3 0.4 0.5 0.6

0

10

–10

–30

–20

20

Amplitude

A
n
g
le

 φ

Re = 10 000, ε = 0.01

Re = 6300, ε = 0.005

Figure 2. Evolution of the angle (in degrees) and amplitude of the instability mode in the two
cases. Solid line: ε = 0.005, Re = 6300. Dashed line: ε = 0.01, Re = 10 000. The axial vorticity
structure of the instability mode at the circles is shown in figure 1.
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Figure 3. Mean vorticity profiles (z- and θ -averaged) as a function of the radial coordinate
(scaled with the initial vortex radius) at different instants for the Lamb–Oseen vortex in a
small strain field for ε = 0.005, Re = 6300. Profiles are separated by 	t = 200 (scaled with the
turnover time) and shifted by 	r =1 (exception: between profiles 4 and 6, 	t = 100). The
first profile on the left is at t = 0 and the unperturbed profile is repeated in dotted style for
reference.

perturbation affects only the vortex core, by draining the mean vorticity out of the
centre, while almost no effects are visible outside the core, contrary to what we will
now observe for the second set of parameters.

3.2. Highly nonlinear regime

In the second simulation of case (i), we are much above the threshold. The linear
growth rate is now σ = 1.08 × 10−2, that is about six times higher than in the previous
case. The evolution of the energy of the different modes is plotted in figure 4. The
unstable mode is growing as predicted by the linear theory of Le Dizès & Laporte
(2002), and there is no visible departure from the linear growth until t � 120, but the
mode structure is not observed to rotate as in the previous case. The orientation angle
slightly increases instead of decreasing as the amplitude grows (see figure 2). This
behaviour was demonstrated as a possible weakly nonlinear regime by Racz & Scott
(2008), but here it may also be due to the fact that we are far from the threshold.
Indeed, the mode structure is rapidly strongly modified (figure 1c) such that the
weakly nonlinear theory hypothesis is no longer satisfied. The evolution becomes
strongly nonlinear as illustrated in figure 5, suggesting that there is no saturation
mechanism. In these snapshots, we clearly observe the formation of secondary vortex
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Figure 4. Energy of the fundamental mode and its harmonics as a function of time, showing
the linear growth and saturation of the elliptic instability. The energy of the fundamental
mode kz = kz0 = 2.25 and its successive harmonics kz = 2kz0, 3kz0, 4kz0, 5kz0 are given by the
plain black line and the grey-scale lines, respectively; the dotted line represents the energy of
the mean flow correction (kz = 0) and the dashed line gives the slope of the linear growth. Case
(i) for ε = 0.01, Re = 10 000.

structures around the main vortex. These structures, which resemble vortex loops,
move away from the vortex axis and become unstable. Small scales are then created,
but they are quickly damped by viscosity. After this disordered regime, the main
vortex reforms; but because some vorticity has moved away from the initial vortex
core, it is now much larger and has a weaker vorticity peak. This evolution can
also be seen in figure 6, which displays the mean vorticity profile as a function of
time. Note that the formation of a thin layer on the mean vorticity profile is clearly
visible on the fifth profile at t = 240. The trace of the expelled vortex structures
observed in figures 5(c, d ) can also be associated with the secondary peak seen in the
sixth profile. These features are also visible in supplementary movie 1 (available at
journals.cambridge.org/flm) showing the three-dimensional evolution of an isosurface
of the total vorticity.

3.3. A universal mechanism for vortex core growth

In the strongly nonlinear simulations we observe that the size of the vortex core,
defined as the second moment of the vorticity distribution, increases during the
process. Moreover, after the breakdown of the vortex and the relaminarization of the
flow, an elliptic instability can grow again, widening the vortex a step further.

Figure 7 shows the evolution of the vortex core size for ε = 0.005 at two different
Reynolds numbers. For each case, the following features are observed:

(i) The core radius increases during the growth of the elliptic instability;
(ii) It stops when small scales are generated and the vortex has been sufficiently

altered;
(iii) The vortex relaminarizes while keeping its radius constant; and
(iv) Eventually, a new elliptic instability develops leading to another growth of the

core radius.
What is not apparent in figure 7 is that even though the second-order moment (vortex
core size) remains constant, the flow is very time-dependent and resembles the last
two rows of figure 5 at the beginning and at the end of the plateau, respectively.

The two different Reynolds number flows exhibit the same qualitative behaviour,
but the larger Reynolds number leads to a larger increase in the radius for a given
step. This is in agreement with the saturation of the elliptic instability through viscous
effects. It also takes longer (time is normalized by multiplying by the growth rate,
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Figure 5. Axially averaged vorticity contours in a plane perpendicular to the vortex axis (left)
and total vorticity maps in longitudinal planes containing the vortex axis oriented along the
direction of compression (middle) and of stretching (right) at different times (from top to
bottom: t = 120, 200, 240, 280, 360). In the left snapshots, the spatial scale is the same for all
snapshots, so is the grey scale which maps zero vorticity to white and ω = 2 to black. The
contours are equidistant vorticity levels ranging from minimum to maximum vorticity of each
snapshot. For every longitudinal cut, the grey scale (white for ω =0 to black for ω > 3) and
the spatial scale are the same.

which is close to the inviscid one in both cases) for the vorticity field to recover from
the breakdown (relaminarization plateau) and before the process can start over again.

In these simulations, only the most unstable wavenumber and its harmonics have
been considered. We suspect that the recovery time before the next elliptical instability
growth could be shorter if the other wavenumbers were present.
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Figure 6. Same as in figure 3 but for ε =0.01 and Re = 10 000. Profiles are here separated by
	t = 40 (scaled with the turnover time) and shifted by 	r = 1.5. The first profile on the left is
at t = 80.
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Figure 7. Evolution of the vortex radius as a function of time, under the nonlinear effect
of several growth of an elliptic instability, for two different Reynolds numbers and the same
strain rate ε =0.005. For each curve, time is normalized by multiplying by the growth rate of
the elliptic instability.

The above simulations allow us to put forward the following points:
(i) The main effect of nonlinear evolution of the elliptic instability is to increase

the effective vortex core size;
(ii) The process can happen more than once; and
(iii) A small elliptic deformation can lead to a large increase in the core size.

All the observations suggest that the widening of the vortex core through elliptic
instability may be very generic and at work in all vortex systems at high Reynolds
numbers.

4. Counter-rotating vortices
The simulations of the two counter-rotating vortices system have been performed

to check the robustness of the nonlinear scenario observed for case (i). In that case,
the strain field responsible for the elliptic instability in each vortex is generated by
the other vortex. As both vortices have to adapt themselves to the strain generated
by their neighbour, we first perform a two-dimensional simulation to obtain the basic
flow, with the same three-dimensional pseudo-spectral code. This two-dimensional
simulation was initialized by a field composed of two Lamb–Oseen vortices of opposite
circulation ±Γ , same radius a0 and separated by a distance b such that b/a0 = 5.5.
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Figure 8. Elliptic instability in vortex pairs. Total vorticity maps in the plane containing both
vortex axes at different times (a–f : t = 22, t = 42, t =62, t = 78, t = 88, t = 100). The grey scale
goes from white (ω = 0) to black (ω > 5) and is the same in each snapshot.

The vortex cores grow slowly by diffusion, but are also elliptically deformed by the
strain and quickly reach a quasi-stationary state as in case (i) (see Sipp, Jacquin &
Cossu 2000; Le Dizès & Verga 2002 for details). We then stop the simulation when
b/a(t) = 5, which will be our basic state with Reynolds number Re = 6300.

For these parameters, the equivalent external strain rate is ε = (a/b)2 = 0.04 and
the linear growth rate is σ = 4.2 × 10−2, so that we are far above the instability
threshold and the strongly nonlinear evolution as in case (i) is expected. Counter-
rotating vortex pairs are also known to be unstable to a long-wavelength (Crow)
instability. This instability is responsible for the formation of vortex rings (Leweke &
Williamson 1998), and is expected to grow simultaneously with the short-wavelength
elliptic instability we are interested in. Here, the Crow instability is filtered out
by considering periodic boxes of small axial length. No interactions between both
instabilities are therefore taken into account. The nonlinear development of the Crow
instability has been considered elsewhere (Marshall et al. 2001; Bristol et al. 2004).

Contrary to case (i), the base flow is now allowed to diffuse by viscosity during
the nonlinear evolution of the perturbations. The three-dimensional simulations are
however initialized by the most unstable linear eigenmode of the base flow obtained
at the end of the two-dimensional simulation with a small amplitude (1 %). The
time evolution of the total vorticity in the plane containing the vortex axes is shown
in figure 8. As for case (i), movie 2 (see J. Fluid Mech. website) shows the three-
dimensional evolution of vorticity. We can see that the nonlinear dynamics are
qualitatively similar to what has been plotted in figure 5. Thin layers of vorticity are
formed at the periphery of the vortex, and vortex loops are ejected from the vortex
core (compare for example figure 5c with figure 8c, d ). These secondary vorticity
structures are then destabilized and dissipated by viscosity. The new vortices which
form after this nonlinear evolution are, as for the single vortex case, larger and
weaker (figure 9). The average profiles of the last snapshot (t = 100) are shown in
figure 9 for each vortex. The vortex circulation is conserved, but the radius computed
from the second-order moment of the distribution gives a = 1.68, whereas a purely
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Figure 9. Mean vorticity profiles (z- and θ -averaged) as a function of the radial coordinate
(scaled with the initial core radius) after 100 turnover times, obtained by diffusion only or
with the action of elliptic instability, in the case of counter-rotating vortices. The profiles of
the two vortices are almost the same.

diffusive evolution would give adiff = 1.18 at this Reynolds number. Alternatively, it
would require 460 turnover times instead of 100 in order to obtain the same radius
by diffusion only.

Other sets of parameters far above the threshold have been considered for both
the strained vortex and the two vortex configurations. They have all provided similar
evolutions demonstrating the universality of the nonlinear dynamics of the elliptic
instability. Experiments for the two-vortex system have been performed by Leweke &
Williamson (1998) (see also Laporte & Leweke 2002). Unfortunately, they have not
performed vorticity measurement in the late nonlinear regime. However, their dye
visualizations (see figure 19 of Leweke & Williamson 1998) exhibit mushroom-like
structures which resemble the expelled vorticity structure observed in figure 8(d,e).

5. Conclusion
In this paper, we have demonstrated that both the weakly nonlinear and the strongly

nonlinear evolutions of the elliptic instability were possible. The weakly nonlinear
dynamics which have been observed very close to the threshold are characterized by
a limit cycle behaviour. The strongly nonlinear dynamics, which have been obtained
in most simulations, are much more violent but possess some universal characteristic
features. We have shown that the dynamics always follow the following steps:

(i) concentration of the vorticity in thin layers at the periphery of the vortex,
(ii) expulsion of the vortex loops,
(iii) breakdown of the whole structure, and
(iv) relaminarization process leading to the reformation of a weaker and larger

vortex.
This process may start again after relaminarization. We claim that this evolution is
universal in high-Reynolds-number flows.

The main consequence of these results is that a moderate strain field can lead to
a dramatic reorganization of the vortex, in a highly dissipative process, and a rapid
modification of its characteristics. In particular, we have seen that the core radius
of a strained vortex can increase quickly and significantly by the repeated action of
the elliptic instability even if the Reynolds number is large. We suspect that this core
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growth mechanism is active in the dynamics of trailing vortices generated by aircraft.
It could explain the rapid vortex merging of the co-rotating flap and tip vortices, and
the turbulent character of their core structure observed before merging (Devenport,
Vogel & Zsoldos 1999).

Financial supports from the European Community (FAR-Wake project AST4-CT-
2005-012238) and from the French National Agency for Research (Vortex project
ANR-05-BLAN-0241) are acknowledged.

Supplementary movies available at journals.cambridge.org/flm.

REFERENCES

Bristol, R. L., Ortega, J. M., Marcus, P. S. & Savaş, Ö. 2004 On cooperative instabilities of
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